SAST: Learning Semantic Action-Aware Spatial-Temporal Features for Efficient Action Recognition
نویسندگان
چکیده
منابع مشابه
Learning Representative Temporal Features for Action Recognition
in this paper we present a novel video classification methodology that aims to recognize different categories of third-person videos efficiently. The idea is to tracking motion in videos and extracting both short-term and long-term features from motion time series by training a multichannel one dimensional Convolutional Neural Network (1DCNN). The positive point about our method is that we only...
متن کاملLearning semantic features for action recognition via diffusion maps
Efficient modeling of actions is critical for recognizing human actions. Recently, bag of video words (BoVW) representation, in which features computed around spatiotemporal interest points are quantized into video words based on their appearance similarity, has been widely and successfully explored. The performance of this representation however, is highly sensitive to two main factors: the gr...
متن کاملRobust Action Recognition Using Multi-Scale Spatial-Temporal Concatenations of Local Features as Natural Action Structures
Human and many other animals can detect, recognize, and classify natural actions in a very short time. How this is achieved by the visual system and how to make machines understand natural actions have been the focus of neurobiological studies and computational modeling in the last several decades. A key issue is what spatial-temporal features should be encoded and what the characteristics of t...
متن کاملSpatio-temporal Aware Non-negative Component Representation for Action Recognition
This paper presents a novel mid-level representation for action recognition, named spatio-temporal aware non-negative component representation (STANNCR). The proposed STANNCR is based on action component and incorporates the spatial-temporal information. We first introduce a spatial-temporal distribution vector (STDV) to model the distributions of local feature locations in a compact and discri...
متن کاملColor-Aware Local Spatiotemporal Features for Action Recognition
Despite the recent developments in spatiotemporal local features for action recognition in video sequences, local color information has so far been ignored. However, color has been proved an important element to the success of automated recognition of objects and scenes. In this paper we extend the space-time interest point descriptor STIP to take into account the color information on the featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2953113